Mathematics

IN THE DEPARTMENT OF MATHEMATICS AND STATISTICS
IN THE COLLEGE OF SCIENCES

OFFICE: Geology/Mathematics/Computer Science 413
TELEPHONE: 619-594-6191

Faculty
Michael E. O’Sullivan, Ph.D., Professor of Mathematics, Chair of Department

Mathematics and Applications
Ricardo Carretero, Ph.D., Professor of Mathematics, Associate Chair of Department (M.S. Dynamical Systems Graduate Adviser)
T. Marc Dunster, Ph.D., Professor of Mathematics, Associate Chair of Department
Peter V. Blomgren, Ph.D., Professor of Mathematics
José E. Castillo, Ph.D., Professor of Mathematics (M.S. Computational Science Graduate Adviser)
J. Carmelo Interlando, Ph.D., Professor of Mathematics (M.A. Mathematics Graduate Adviser)

Anton Giovanni, Ph.D., Professor of Mathematics (Applied Mathematics Graduate Adviser)
Antonio Palacios, Ph.D., Professor of Mathematics
José E. Castillo, Ph.D., Professor of Mathematics
Christopher O’Neill, Ph.D., Professor of Mathematics
Youngjoon Hong, Ph.D., Professor of Mathematics

NOTE
1. Students with international coursework must submit both an official transcript and proof of degree. If documents are in a language other than English, they must be accompanied by a certified English translation.
2. GRE scores (http://www.ets.org SDSU institution code 321 SDSU)
3. English language score, if medium of instruction was in a language other than English (http://www.ets.org SDSU institution code 4682)

Graduate Admissions
The following materials should be submitted as a complete package directly to:
Graduate Admissions
Enrollment Services
San Diego State University
San Diego, CA 92182-7416

1. Official transcripts (in sealed envelopes) from all postsecondary institutions attended;

Graduate admissions:
1. Students who attended SDSU need only submit transcripts for work completed since last attendance.
2. Students with international coursework must submit both the official transcript and proof of degree. If documents are in a language other than English, they must be accompanied by a certified English translation.
3. English language score, if medium of instruction was in a language other than English

Advancement to Candidacy
All students must satisfy the general requirements for advancement to candidacy as described in Part Four of this bulletin. In addition, the student must have passed a qualifying examination in some programs.

Specific Requirements for the Master of Arts Degree
(Major Code: 17011) (SIMS Code: 776301)

In addition to meeting the requirements for classified graduate standing and the basic requirements for the master’s degree as described in Part Four of this bulletin, the student must meet the following requirements:
1. Complete 30 units of approved 500-, 600-, and 700-level courses, of which at least 24 units must be in mathematics. At least 21 units must be at the 600-level or above. Mathematics 600, 601, and 602 may not be part of this degree. No more than six units of Mathematics 797 and 798 will be accepted toward the degree.
2. Before entering the program, students should have completed the following courses or their equivalents: Mathematics 320, 330, and 524. If a student has not completed these courses before entering the program, he or she may be admitted conditionally.
3. Among the 30 units of coursework, students must include Mathematics 620 and 630 and one course selected from Mathematics 621 or 633.
4. Students must select Plan A and complete Mathematics 799A. Students are advised that a thesis normally takes a year to complete.

Specific Requirements for the Master of Science Degree in Applied Mathematics
(Major Code: 17031) (SIMS Code: 776314)

In addition to meeting the requirements for classified graduate standing, the student must meet the basic requirements for the master’s degree as described in Part Four of this bulletin and complete 30 units of coursework approved by the graduate adviser.

1. Undergraduate Preparation for Admission. Before entering the program, students must complete the following upper division courses: two courses in analysis (to include Mathematics 330), two courses in differential equations (Mathematics 337 and either 531 or 537), one course in programming or numerical analysis (Mathematics 340 or 541), one course in linear algebra (Mathematics 524), and one course in statistics (Statistics 350A or 551A). Students with inadequate undergraduate preparation may be accepted conditionally but will be required to complete courses for removal of the deficiency in the first year of study.

2. Program of Study. To include a plan for removal of any conditions on admission, must be approved by the graduate adviser. The program of study will include at least 21 units in mathematics. The 30 units may include at most 12 units of approved 500-level mathematics courses and at most six units of independent research (Mathematics 797, 798, 799A, 799B). The student must select Plan A, complete Mathematics 799A, Thesis, and give a public oral defense of the thesis. A thesis normally takes one year to complete and is done under the direction of a thesis adviser.

Concentration in Dynamical Systems
(Major Code: 17031) (SIMS Code: 776316)

This concentration focuses on interdisciplinary applications of dynamical systems and nonlinear modeling in biology, chemistry, engineering, and physics. Students with interests in modeling and analyzing real life problems through mathematics will benefit from this concentration. To enter the program, students must possess a bachelor’s degree with a strong mathematical background. The requirements for this concentration are the same as the Specific Requirements for the Master of Science degree in Applied Mathematics with the exception that only one semester of mathematical analysis/advanced calculus (Mathematics 330) is required. Students pursuing this concentration will complete the following 15 units of core courses: Mathematics 531, 537, 538, 636, and 638; 12 units of Mathematics 799A (Thesis/Project). Elective courses include Mathematics 542, 623, 668, 693A, 693B, 797, Physics 580. Elective courses from other departments may be approved by the adviser. For additional information, visit http://nlds.sdsu.edu/masters.

Concentration in Mathematical Theory of Communication Systems
(Major Code: 17031) (SIMS Code: 776317)

This concentration focuses on the area of mathematics relevant to the transmitting and processing of information by digital or analog methods. In addition to meeting the requirements for classified standing in the Master of Science program in applied mathematics, students pursuing this concentration should also have completed one upper division course in algebra (Mathematics 320) before entering the program. Students must complete Mathematics 525, 620, 626, 630, 668; one course selected from Mathematics 625 or 667, and one course selected from Mathematics 621 or 631A. Additional courses at the 500- or 600-level in mathematics or in a related discipline may be selected with the approval of the program adviser. The student must select Plan A, complete Mathematics 799A, Thesis, and give a public oral defense of the thesis. A thesis normally takes one year to complete and is done under the direction of a thesis adviser.

Communication Systems Certificate
(SIMS Code: 776347)

The Communication Systems Certificate provides mathematicians and engineers with the specialized training in the areas of coding, cryptography, and signal processing relevant for the understanding of modern communication systems. This certificate is designed for individuals who need the knowledge this certificate program provides to participate in projects in the area of communication systems and signal processing.

This is an advanced academic certificate at the postbaccalaureate level. The admission requirement is a bachelor’s degree in mathematics, engineering, or a closely related field. Individuals with knowledge of the background materials through work or self-study may also be accepted into this program at the discretion of the program director.

Course requirements for the certificate program are the following courses completed with a grade point average of 3.0 or above: Mathematics 522, 525, 626, 667, and 668.

For information on the application process, contact the Department of Mathematics and Statistics or call 619-594-6191.

Courses Acceptable for Master’s Degree Programs in Applied Mathematics, Mathematics, and Statistics (MATH)

Refer to Courses and Curricula and Regulations of the Division of Graduate Affairs sections of this bulletin for explanation of the course numbering system, unit or credit hour, prerequisites, and related information.

UPPER DIVISION COURSES

MATH 508. Dynamical Systems and Modeling (3)
Prerequisite: Mathematics 254 or graduate standing. Differential equations using analytical, graphical, and numerical representations.

MATH 509. Computers in Teaching Mathematics (3)
Two lectures and three hours of laboratory. Prerequisite: Mathematics 252 with a grade of C (2.0) or better. Proof of completion of prerequisite required: Copy of transcript.

MATH 510. Introduction to the Foundations of Geometry (3)
Prerequisite: Mathematics 151 with a grade of C (2.0) or better. Proof of completion of prerequisite required: Copy of transcript.

MATH 520. Algebraic Structures (3)
Prerequisite: Mathematics 320 with a grade of C (2.0) or better or graduate standing. Proof of completion of prerequisite required: Copy of transcript.

MATH 522. Number Theory (3)
Prerequisite: Mathematics 245 with a grade of C (2.0) or better. Proof of completion of prerequisite required: Copy of transcript.

MATH 523. Mathematical Logic (3)
Prerequisite: Mathematics 245 with a grade of C (2.0) or better. Proof of completion of prerequisite required: Copy of transcript.

Propositional logic and predicate calculus. Rules of proof and models. Completeness and the undecidability of arithmetic. Not open to students with credit in Philosophy 521.
MATH 524. Linear Algebra (3)
Prerequisites: Mathematics 245 and either 254 or 342A with a grade of C (2.0) or better in each course. Proof of completion of prerequisites required: Copy of transcript.
Vector spaces, linear transformations, orthogonality, eigenvalues and eigenvectors, normal forms for complex matrices, positive definite matrices and congruence.

MATH 525. Algebraic Coding Theory (3)
Prerequisite: Mathematics 254 with a grade of C (2.0) or better. Proof of completion of prerequisite required: Copy of transcript.

MATH 530. Advanced Calculus II (3)
Prerequisite: Mathematics 330 with a grade of C (2.0) or better or graduate standing. Proof of completion of prerequisites required: Copy of transcript.
Formal definitions and analysis within the framework of single variable functions. Advanced concepts in analysis. (Formerly numbered Mathematics 534B.)

MATH 531. Partial Differential Equations (3)
Prerequisites: Mathematics 252 and 337 with a grade of C (2.0) or better in each course. Proof of completion of prerequisites required: Copy of transcript.
Boundary value problems for heat and wave equations: eigenfunction expansions, Sturm-Liouville theory and Fourier series. D'Alembert's solution to wave equation; characteristics. Laplace's equation, maximum principles, Bessel functions.

MATH 532. Functions of a Complex Variable (3)
Prerequisite: Mathematics 252 with a grade of C (2.0) or better. Proof of completion of prerequisite required: Copy of transcript.
Analytic functions, Cauchy-Riemann equations, theorem of Cauchy, Laurent series, calculus of residues, and applications.

MATH 533. Vector Calculus (3)
Prerequisite: Mathematics 254 or 342A with a grade of C (2.0) or better. Proof of completion of prerequisite required: Copy of transcript.
Scalar and vector fields; gradient, divergence, curl, line and surface integrals; Green's theorem. Applications to potential theory or fluid mechanics or electromagnetism.

MATH 537. Ordinary Differential Equations (3)
Prerequisite: Mathematics 337 with a grade of C (2.0) or better. Proof of completion of prerequisite required: Copy of transcript.
Theory of ordinary differential equations: existence and uniqueness, dependence on initial conditions and parameters, linear systems, stability and asymptotic behavior, plane autonomous systems, series solutions at regular singular points.

MATH 538. Discrete Dynamical Systems and Chaos (3)
Prerequisites: Mathematics 151 and either 254 or 342B with a grade of C (2.0) or better in each course. Proof of completion of prerequisites required: Copy of transcript.
One- and two-dimensional iterated maps, equilibria and their stability, sensitive dependence on initial conditions, Lyapunov exponents, horseshoe maps, period doubling, chaotic attractors, Poincare maps, stable/unstable manifolds, bifurcations. Applications in biology, chemistry, physics, engineering, and other sciences.

MATH 541. Introduction to Numerical Analysis and Computing (3)
Prerequisites: Mathematics 340; and either graduate standing, Mathematics 254, 342A, or Aerospace Engineering 280 with a grade of C (2.0) or better in each course. Proof of completion of prerequisites required: Copy of transcript.
Solution of equations of one variable, polynomial interpolation and approximation, numerical differentiation and quadrature, linear least squares approximation, the fast Fourier transformation.

MATH 542. Introduction to Computational Ordinary Differential Equations (3)
Prerequisites: Mathematics 340; and either Mathematics 337, 342A, or Aerospace Engineering 280 with a grade of C (2.0) or better in each course. Proof of completion of prerequisites required: Copy of transcript.

MATH 543. Numerical Matrix Analysis (3)
Prerequisites: Mathematics 340; and either Mathematics 254, 342A, or Aerospace Engineering 280 with a grade of C (2.0) or better. Proof of completion of prerequisites required: Copy of transcript.

MATH 545. Numerical Linear Algebra (3)
Prerequisites: Mathematics 340; and either Mathematics 337, 342A, or Aerospace Engineering 280 with a grade of C (2.0) or better. Proof of completion of prerequisites required: Copy of transcript.

MATH 560. Groups, Rings, and Fields (3)
Prerequisites: Mathematics 320 and either 520 or 522 or 525 with a grade of C (2.0) or better. Proof of completion of prerequisite required: Copy of transcript.
Permutations, combinations, generating functions, recurrence relations, inclusion-exclusion counting. Polya's theory of counting, other topics and applications.

MATH 579. Combinatorics (3)
Prerequisite: Mathematics 254 with a grade of C (2.0) or better. Proof of completion of prerequisite required: Copy of transcript.
Permutations, combinations, generating functions, recurrence relations, inclusion-exclusion counting. Polya's theory of counting, other topics and applications.

MATH 623. Algebra-Geometry Dictionary, Commutative Algebra, Groups, Fields, and Galois Theory (3)
Prerequisite: Consent of instructor.
Selected topics in classical and modern mathematical sciences. May be repeated with the approval of the instructor. See Class Schedule for specific content. Limit of nine units of any combination of 296, 496, 596 courses applicable to a bachelor’s degree. Maximum credit of six units of 596 applicable to a bachelor’s degree. Credit for 596 and 696 applicable to a master’s degree with approval of the graduate adviser.

GRADUATE COURSES

MATH 620. Groups, Rings, and Fields (3)
Prerequisites: Mathematics 320 and either 520 or 522 or 525 with a grade of C (2.0) or better in each course.
Group theory to include finite Abelian groups, isomorphism theorems, matrix groups, and permutation groups. Ring theory to include ideals, principal ideal domains, and unique factorization. Field theory to include field extensions and finite fields.

MATH 621. Topics in Advanced Algebra (3)
Prerequisite: Mathematics 620 with a grade of C (2.0) or better. Topics in advanced algebra. Typical courses to include algebra-geometry dictionary, commutative algebra, groups, fields, and Galois theory. May be repeated with new content. See Class Schedule for specific content. Maximum credit six units.

MATH 623. Linear Algebra and Matrix Theory (3)
Prerequisite: Mathematics 524 with a grade of C (2.0) or better. Characteristic and minimal polynomials, Cayley-Hamilton theorem, canonical forms, hermitian matrices, Sylvester’s law, norms, singular values, stability, non-negative matrices.
MATH 625. Algebraic Coding Theory (3)
Prerequisites: Mathematics 525 and Mathematics 520 or 522 with a grade of C (2.0) or better in each course.
Algebraic theory of error correction codes and decoding algorithms used in modern communications systems. Reed-Solomon codes and algebraic decoding algorithms. Code duality, MacWilliams’ identities and the linear programming bound. Probabilistic decoding of convolutional codes, low-density parity-check codes and turbo codes.

MATH 626. Cryptography (3)
Prerequisites: Mathematics 320 and 522 with a grade of C (2.0) or better in each course.

MATH 627A. Modern Algebra I (3)
Prerequisite: Mathematics 520 with a grade of C (2.0) or better.
Group theory, including isomorphism theorems, permutation groups, and simplicity of A_n, finite abelian groups, and Sylow theorems. Rings, ideals, principal ideal domains, and unique factorization.

MATH 627B. Modern Algebra II (3)
Prerequisite: Mathematics 627A with a grade of C (2.0) or better.
Modules and the Wedderburn-Artin theorem, field extensions, splitting fields, Galois theory, finite fields, the fundamental theorem of algebra.

MATH 630. Applied Real Analysis (3)
Prerequisite: Mathematics 330 with a grade of B- (2.7) or better. Recommended: Mathematics 530 with a grade of B- (2.7) or better.
Lebesgue measure and integration, metric spaces, Banach spaces, Hilbert spaces. (Formerly numbered Mathematics 630A.)

MATH 630B. Functions of a Real Variable (3-3)
Prerequisites: Mathematics 524 and 530 with a grade of C (2.0) or better in each course. Mathematics 630 is prerequisite to Mathematics 630B.
Lebesgue measure and integration, metric spaces, Banach spaces, Hilbert spaces, spectral theory.

MATH 631A-631B. Functions of a Complex Variable (3-3)
Prerequisites: Mathematics 530 and 532. Mathematics 631A is prerequisite to 631B.

MATH 633. Advanced Topics in Analysis (3)
Prerequisite: Mathematics 630. Recommended: Mathematics 668.
Specific topics in analysis to include Lebesgue and Sobolev spaces and spectral theory. Investigation of new theoretical tools and their applications.

MATH 635. Pattern Formation (3)
Prerequisites: Mathematics 337 or 531 and Mathematics 254 or 342A, 342B.

MATH 636. Mathematical Modeling (3)
Prerequisites: Mathematics 254 and 337 or Mathematics 342A and 342B or Aerospace Engineering 280 with a grade of C (2.0) or better in each course.
Advanced models from the physical, natural, and social sciences. Emphasis on classes of models and corresponding mathematical structures.

MATH 638. Continuous Dynamical Systems and Chaos (3)
Prerequisites: Mathematics 337 or 537 and Mathematics 254 or 342A, 342B with a grade of C (2.0) or better in each course.

MATH 639. Nonlinear Waves (3)
Prerequisite: Mathematics 531 or 537 with a grade of C (2.0) or better.

MATH 667. Mathematical Aspects of Systems Theory (3)
Prerequisites: Mathematics 524 and 537 with a grade of C (2.0) or better in each course.
Linear and nonlinear systems, nonlinear differential equations, equilibrium equations. Linearization, state transition matrix, stability theory, feedback control systems.

MATH 668. Applied Fourier Analysis (3)
Prerequisites: Mathematics 330, 524; 530 or 532 with a grade of C (2.0) or better in each course.
Discrete and continuous Fourier transform methods with applications to statistics and communication systems.

MATH 693A. Advanced Numerical Methods: Computational Optimization (3)
Prerequisites: Mathematics 524 and 541 with a grade of C (2.0) or better in each course.
Numerical optimization: Newton, Truncated-Newton, and Quasi-Newton methods for unconstrained optimization; with applications to nonlinear least squares, orthogonal distance regression, and nonlinear equations.

MATH 693B. Advanced Numerical Methods: Computational Partial Differential Equations (3)
Prerequisites: Mathematics 531 and 541 with a grade of C (2.0) or better in each course.

MATH 695. Communication in Interdisciplinary Applied Mathematics (3)
Prerequisite: Graduate standing.
Analysis of research publications. Communication skills for interdisciplinary mathematics. Development of a grant proposal and outreach item. Maximum credit three units applicable to a master’s or doctoral degree.

MATH 696. Selected Topics in Mathematical Sciences (3)
Prerequisite: Graduate standing.
Intensive study in specific areas of mathematical sciences. May be repeated with new content. See Class Schedule for specific content. Credit for 596 and 696 applicable to a master’s degree with approval of the graduate adviser.

MATH 720. Seminar (1-3)
Prerequisite: Consent of instructor.
An intensive study in advanced mathematics. May be repeated with new content. See Class Schedule for specific content. Maximum credit six units applicable to a master’s degree.
MATH 790. Practicum in Teaching of Mathematics (1) Cr/NC
Prerequisite: Award of graduate teaching associateship in mathematics.
Supervision in teaching mathematics. Lecture writing, style of lecture presentation and alternatives, test and syllabus construction, and grading system. Not applicable to an advanced degree. Required for first semester GTA’s.

MATH 797. Research (1-3) Cr/NC/RP
Prerequisite: Six units of graduate level mathematics.
Research in one of the fields of mathematics. Maximum credit six units applicable to a master’s degree.

MATH 798. Special Study (1-3) Cr/NC/RP
Prerequisite: Consent of staff; to be arranged with department chair and instructor.
Individual study. Maximum credit six units applicable to a master’s degree.

MATH 799A. Thesis or Project (3) Cr/NC/RP
Prerequisites: An officially appointed thesis committee and advancement to candidacy.
Preparation of a project or thesis for the master’s degree.

MATH 799B. Thesis or Project Extension (0) Cr/NC
Prerequisite: Prior registration in Thesis or Project 799A with an assigned grade symbol of RP.
Registration required in any semester or term following assignment of RP in Course 799A in which the student expects to use the facilities and resources of the university; also student must be registered in the course when the completed thesis or project is granted final approval.

MATH 799C. Comprehensive Examination Extension (0) Cr/NC
Prerequisite: Completion or concurrent enrollment in degree program courses.
Registration required of students whose only requirement is completion of the comprehensive examination for the master’s degree
Registration in 799C limited to two semesters.

For additional courses useful to mathematicians, see the sections under:
Computer Science
Mathematics and Science Education
Statistics